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Abstract

in photochemical process was investigated.

Objectives: Photocrosslinking systems of polymers have been widely studied using UV or visible light irradiation.
However, the photodegradation behavior derived from light irradiation was rarely reported, comparing with the
photocrosslinking. In this study, the tyramine-modified hyaluronic acid (HA/Tyr) hydrogel was prepared using
riboflavin (RF) as a photoinitiator, and the degradation behavior of HA by the reactive oxygen species (ROS) generated

Materials and methods: The HA/Tyr conjugate was synthesized by EDC/NHS chemistry to introduce phenol group.
Degree of substitution (DS, %) of phenol group to HA molecule was about 25%. The structural change of HA/Tyr was
measured by proton nuclear magnetic resonance ('H-NMR) and attenuated total reflectance infrared spectroscopy
(ATR-FTIR), and the rheological properties of photocrosslinked HA/Tyr hydrogel were investigated by rheometer.
Results: The HA/Tyr solution with 25% substitution formed a stable hydrogel via visible light irradiation in the presence
of RF photoinitiator. Rheological data of HA/Tyr solution showed that the storage modulus (G') was increased with
increasing HA concentration. Additionally, it was found that RF initiated by visible light irradiation induced the
degradation of HA molecular chain, and consequently reduced the viscosity of HA/Tyr solutions.

Conclusion: The results indicate that RF-based photoinitiator system caused the degradation of HA molecule
by ROS generated in photochemical process as well as the crosslinking of HA/Tyr.
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Introduction

Hyaluronic acid (HA), or hyaluronan, is a linear natural
polysaccharide composed of D-glucuronic acid and N-
acetyl glucosamine. HA is a non-sulfated glycosaminogly-
can (GAGQG), an essential component of the extracellular
matrix (ECM) in many parts of the body, which exhibits
excellent viscoelastic property, favorable biocompatibility,
and biodegradability [1]. Additionally, HA is interactive
and binds to many types of cell surface receptors contain-
ing CD44, ICAM-1, and RHAMM [2, 3]. Because of these
unique properties of HA, it has been widely used in bio-
medical applications such as osteoarthritis, wound healing,
drug delivery, and tissue engineering scaffolds [1, 4].
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However, native HA has some limitations that it cannot
last long in the human body due to its poor mechanical
properties and rapid degradation by hyaluronidase in vivo.
It has been reported that the half-life of HA does not ex-
ceed 1 day after injection into joints or skin [5]. To over-
come these problems, HA should be crosslinked via
various physical and chemical crosslinking methods to en-
sure a longer residence time with mechanical strength in
the body. Particularly, the introduction of chemical cross-
linking can generate a 3-D hydrogel network containing a
large amount of water, and the resultant stable hydrogel
retains a higher resistance to enzymatic degradation and
molar mass reduction compared to native HA. In general,
HA can be chemically crosslinked using crosslinking re-
agents such as 1,4-butanediol diglycidyl ether (BDDE) [6],
divinyl sulfone (DVS) [7] and carbodiimide. In addition to
direct chemical crosslinking of native HA containing car-
boxylic acid and hydroxyl groups, HA hydrogels can be
also prepared by physical and chemical crosslinking of HA
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derivatives modified with various photofunctional groups.
Recently, the chemically crosslinked HA hydrogel was fab-
ricated via photocrosslinking using photoinitiators and
visible/UV light [8—11]. Several studies reported that vis-
ible light can induce the gelation of tyramine (Tyr)-modi-
fied polymers in the presence of ruthenium (Ru (II))
photoinitiator and sodium persulfate (SPS) [12, 13]. Also,
riboflavin (RF) and SPS as photoinitiators induce the gel-
ation of polymers by visible light irradiation.

RF, known as vitamin B,, is a naturally occurring
photoinitiator used in the manufacture of various photo-
crosslinked hydrogels. RF can be reversibly reduced and
oxidized by accepting or losing a pair of hydrogen atoms
(Redox reaction). The redox reaction of RF can induce
the crosslinking reaction via radical formation [14]. The
crosslinking mechanism involves the excitation of RF by
light absorption at 220-450 nm wavelengths, that is, UV
and visible region. In the photochemical reaction, RF ab-
sorbs light energy from UV or visible light and excited
to short lived singlet state (‘RF*, 10™®s lifetime), which
transformed into a highly reactive and long lived triplet-
excited state (°RF*, 10~ 2s lifetime). *RF* is a powerful
oxidant biradical. In the presence of oxygen, *RF* can
transfer energy directly to molecular oxygen in the
ground state (0,) to produce reactive singlet oxygen
(*O,). These reactions are commonly referred to as type
II reaction (energy transfer). Alternatively, >RF* can react
with other substrates or solvents, and can generate free
radicals or radical ions by hydrogen atom extraction or
electron transfer to the substrate. These radicals can
interact with 20, to produce the reactive oxygen species
(ROS) such as superoxide anion radicals (O,7), hydrogen
peroxides (H,O,), hydroxyl radicals (-OH), etc., and
these reactions are commonly referred to as type I reac-
tion (electron-transfer) (Fig. 1) [15—18]. Both these reac-
tions occur simultaneously.

In this study, the photocrosslinked HA/Tyr hydrogel
was prepared using RF-based initiators under visible
light irradiation. Visible light was used as an alternative
irradiation source of UV light because it has longer
wavelengths, and thus makes more preferable condition
for living cells and desirable for biomedical applications
[19-21]. In this photo-crosslinking process, together
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with the oxidation, the dityrosine crosslinking was
formed by the reaction between tyrosil radicals gener-
ated from phenolic groups (tyramine moiety) of HA/Tyr.
Notably, RF-initiated HA/Tyr can also cause the chain
degradation of HA by ROS (including 'O,) as well as
crosslinking via the formation of dityrosine. Therefore,
the effect of photosensitized RF and generated ROS on
the HA molecular chain was investigated using viscosity
change of HA/Tyr solution.

Materials and methods

Materials

Hyaluronic acid (HA, sodium salt form, Mw 550 kDa) was
purchased from Shandong Freda Biochem Co. Ltd. (Jinan,
China). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC), N-Hydroxysulfosuccinimide (NHS)
and sodium persulfate (SPS) were supplied by Sigma-
Aldrich Co. (St Louis, MO, USA). Riboflavin 5’-phosphate
sodium salt (RF) was supplied by Tokyo Chemical Industry
Co. Ltd. (Tokyo, Japan). Tyramine hydrochloride (Tyr) was
supplied by Acros Organics (Morris Plains, NJ, USA).

Synthesis of HA/Tyr conjugate

Tyramine-modified hyaluronic acid (HA/Tyr) was syn-
thesized by coupling HA with tyramine hydrochloride
via EDC/NHS coupling reaction. Briefly, HA sodium
salt (1g, 2.5 mmol) was dissolved in 100 ml of distilled
water to obtain 1wt% HA solution. To activate the
carboxyl group of HA, EDC (0.48g, 2.5mmol) and
NHS (0.29 g, 2.5 mmol) were added to the HA solution
and reacted for 5min in an ice bath. After this time,
Tyr (0.717 g, 1.25 mmol) was dissolved in HA solution
and reacted for 1h in the ice bath. The solution was
stirred overnight at room temperature. The reaction
mixture was purified by dialysis using cellulose mem-
brane (cut-off from 120,000 to 13,000) for 3 days. The
resulting HA/Tyr conjugate was collected as solid pow-
der after lyophilization [22-24].

Conjugation of tyramine to the carboxylic acid of HA
was confirmed by '"H-NMR (600 MHz, ADVANCE III,
Bruker, USA). The degree of substitution (DS, %) of Tyr
residues in HA/Tyr conjugate was defined as a number
of tyramine molecules per 100 repeating units of HA,

hv

RF —> IRF*— 3RF*—>

— + Substrate or solvent —> ROS

, ( Type I reaction)

+ 30,
( Type II reaction)

Fig. 1 Excitation of RF and generation of ROS according to two possible photochemical reaction (Type | and Il)
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and calculated by comparing the ratio of the relative
peak integration of the tyramine aromatic protons (8
6.8-7.2 ppm) and acetyl methyl protons of HA (8 2.0
ppm) using the following equation. The degree of substi-
tution was approximately 25%.

_ITyr/4

bs (%) = Ina/3

x 100 (1)

Preparation of HA/Tyr hydrogels using RF and visible
light

HA/Tyr hydrogel was prepared via photocrosslinking of
the phenolic moieties induced by RF and visible light ir-
radiation [25]. The concentration range of HA/Tyr solu-
tions was 0.5-2.0 wt%. 0.5 mM of RF and 100 mM of SPS
were added into the HA/Tyr solution, and stirred for 5
min [8]. The visible light (2500 mW/cm?, 440 nm) was ir-
radiated for 30s, and the hydrogel was kept overnight to
complete the crosslinking reaction.
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Structural and rheological analyses

ATR-IR spectroscopy (ALPHA-P, Bruker, USA) of HA/Tyr
sample was conducted to confirm the introduction of Tyr to
the HA backbone. Rheological measurement was performed
using a rheometer (MARS 40, Haake, Germany) with a par-
allel plate geometry (60 mm diameter and 1 mm gap). The
parameters were determined, based on the amplitude sweep
in the linear region of storage modulus (G’) and loss modu-
lus (G”) to find range in which polymer can maintain struc-
tural stability without deformation (shear stress, T=1Pa).
Then, frequency sweep of hydrogel was measured to exam-
ine the gel strength with a 1 Pa and 37 °C from 0.1 to 10 Hz.
Also, a time sweep of hydrogel was performed to confirm a
stable gel formation during 900s at 37 °C. To investigate the
effect of ROS on the HA chain degradation, the viscosity
change of HA solution in the presence of RF and SPS was
measured in dark and light conditions.

Results

Synthesis and characterization of HA/Tyr conjugate
HA/Tyr conjugate was synthesized by introducing tyr-
amine moiety to the HA backbone by carbodiimide

~

HA/Tyr 25
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Fig. 2 Chemical modification of Tyr on HA backbone. a Synthesis of HA/Tyr conjugates via EDC/NHS coupling reaction, b "H-NMR spectrum of
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coupling reaction using EDC/NHS. The coupling reac-
tion occurred between carboxylic group of HA and
amino group of tyramine (Fig. 2a). The DS (numbers of
tyramine molecules per 100 repeating units of HA mol-
ecule) was determined by comparing the relative peak
ratios of the 3 acetyl methyl protons of HA (2.0 ppm)
and the 4 phenyl protons of tyramine (6.8—7.2 ppm) (Fig.
2b), using "H-NMR spectrum. In this reaction, the molar
ratio of Tyr to HA backbone was 0.5:1, the DS of HA/
Tyr was ~ 25%, and it was named as HA/Tyr 25. The 'H
NMR suggested that the HA/Tyr conjugate was success-
fully synthesized.

Formation of photocrosslinked HA/Tyr hydrogels

Figure 3 shows a visible light-induced crosslinking mech-
anism of the HA/Tyr conjugate using RF photoinitiator.
When visible light (A =440 nm) was exposed in the pres-
ence of RF, RF excited to *RF*, and RF* induced the
crosslinking reaction between phenolic groups of conu-
gated tyramines. Then, the HA/Tyr solution immediately
started to form gel. Photo-sensitive sol-gel transition be-
havior of HA/Tyr was observed by a tube inverting
method (Fig. 4a). The aqueous solution of HA/Tyr was
transformed to a yellowish transparent hydrogel with no
fluidity, and the gel was able to be picked up with surgical
forceps (Fig. 4b,c).

Gelation behavior of photo crosslinked HA/Tyr conjugate
The rheological measurement was performed by com-
paring the storage modulus (G") on various HA concen-
trations. The G’ is a reliable parameter to indicate how
rigid the hydrogel is. As the HA concentration was in-
creased from 0.5wt% to 2.0wt%, G’ value of HA/Tyr
hydrogel was also increased (Fig. 5a). From the fre-
quency sweep results, HA/Tyr 25 sample with 2.0 wt%
concentration was chosen as optimal concentration for
the hydrogelation under 0.5 mM RF, 100 mM SPS and
30 s irradiation conditions. In order to examine the gel-
ation behavior of HA/Tyr 25 with 2.0 wt% concentration,
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the G" and loss modulus (G ") were measured by a time
sweep. In the time range from 0 to 900s, the G’
remained higher than the G”, indicating that the 2.0
wt% HA/Tyr formed a stable hydrogel as a viscoelastic
solid (Fig. 5b).

Viscosity changes of HA solution in the presence of RF
and SPS

The effect of ROS generated by the photoinitiation reac-
tion of RF was investigated by the viscosity change of
HA solution using rheometer. The experiment was con-
ducted with exposure of light in the presence of RF or
RF/SPS. The effect of RF on HA molecule was shown in
Fig. 6. Under the visible light condition, the viscosity of
HA solution with RF was lower than that of HA solution
without RF. Furthermore, the addition of SPS, which
generate divalent anions, also considerably decreased the
viscosity of HA solution. The decrease in the viscosity of
HA solution was mainly associated with the degradation
of HA molecular chains. The viscosity of HA solution
with RF was decreased when visible light was irradiated.
In contrast, the viscosity decrease of HA solution with
RF was not observed under the dark condition. However,
the addition of SPS induced a viscosity decrease, despite
the dark condition (Fig. 6).

Degradation of HA/Tyr hydrogels by ROS

Based on previous experiment, the degradation behavior
of HA/Tyr 25 hydrogel was examined. The degradation
rate of HA was faster under the visible light irradiation
than under the dark condition, similar to the viscosity
change result. In addition, the degradation rate was de-
creased with increasing HA concentration. Thus, HA/
Tyr 25 hydrogel with 2.0 wt% concentration was stable
in dark condition. This was attributed to the ROS gener-
ation during photoinitiation reaction of RF (Fig. 7a,b). In
order to verify the HA degradation by ROS, HA/Tyr 25
hydrogel was washed with sodium azide, which is a 'O,
scavenger [26]. At 3 months after sodium azide

A (440 nm)

RF/SPS

HA-Tyr solution

Photo-crosslinked HA-Tyr hydrogel
Fig. 3 Schematic presentaion of HA/Tyr 25 hydrogel induced by visible light-irradiated crosslinking reaction using RF/SPS

OH
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Fig. 4 Photographs of photocrosslinked HA/Tyr hydrogel, a HA/Tyr solution before (left) and after (right) visible light irradiation for 30's, b
photograph showing easy handling of the HA/Tyr hydrogel with surgical forceps, and (c) transparency of the HA/Tyr hydrogel

treatment, the HA/Tyr hydrogel remained stable without
a severe degradation.

Discussion

Several studies on RF photochemistry were reported that
RF (vitamin B,) can be reversibly reduced by hydrogen
atoms by UV or visible light exposures [27-29]. In this
study, RF-sensitized photocrosslinking system was ap-
plied to HA/Tyr hydrogel. RF as a photoinitiator in-
duced the generation of oxygen radicals that mediate a
covalent bond (crosslink) between phenolic moieties of
tyramine. When exposed to light, RF absorbed energy,
and turned into the triplet exited state (®RF®). It reacted
with substrates (Type I) or oxygen molecular species
(Type II), and generated ROS in this progress. The HA/
Tyr crosslinking was induced by radical intermediates,
such as superoxide anion radicals (O,"), which formed
by *RF*. The photocrosslinking of HA/Tyr conjugate

was originated from this RF photochemistry. Rheological
analysis showed that the storage modulus (G') was in-
creased with increasing polymer concentration, and this
result was attributed to the increase in entanglement
and reactive phenol group concentration.

The viscosity of HA solution was decreased in the
presence of RF photoinitiator. The viscosity drop was
mainly due to the degradation of HA molecules, as re-
ported by Andley and Chakrabarti [30]. The degradation
of HA was associated with the ROS generated by the
photo-excited RF because the viscosity decrease was not
observed in the dark condition or in the absence of RF.

In addition, when SPS was added, the viscosity of the
HA solution was much lower than the addition of RF
only. This result was due to divalent anions, such as sul-
fate and phosphate groups, which were known to
catalyze the ROS generation in RF system [29]. Also,
riboflavin phosphate, a water-soluble form of RF, was
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used as photoinitiator in this study. This might also in-
fluence the generation of ROS. However, when SPS was
added, the viscosity decrease was observed even though
in the dark condition. When SPS was dissolved in water,
it formed persulfate free radicals, which is oxidant with
similar oxidation potentials as hydroxyl radical (-OH)

[31, 32]. Thus, SPS was able to generate the degradation
of HA molecule, regardless of the light.

Based on these results, HA/Tyr hydrogel was gradually
degraded under visible light irradiation, and the degrad-
ation rate was decreased with increasing HA concentra-
tion. Degradation occurred slowly after washing with

Viscosity (Pa-s)
S
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Fig. 6 The effect of photo-excited RF and SPS on the viscosity of HA solution at light or dark condition
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Fig. 7 a Schematic presentaion on the degradation of HA/Tyr hydrogel by ROS derived from RF-based photochemistry. b Photographs of photocrosslinked
HA/Tyr 25 hydrogel (05, 1.0, 1.5 and 20 wt%) showing the decomposition behavior over time under 0.5 mM RF, 100 mM SPS and 30's irradiation time

singlet oxygen scavenger solution, suggesting that HA
degradation was closely related to ROS.

Consequently, RF-based, visible light-initiated photo-
chemical reaction simultaneously induced the crosslink-
ing and degradation reaction of HA/Tyr, and the
degradation of HA/Tyr hydrogel could be minimized by
controlling polymer and initiator concentration, the light
source intensity, and sufficient washing process.

Conclusion

In this study, the photocrosslinkable HA/Tyr conjugates
were successfully prepared by EDC/NHS chemistry. The
HA/Tyr solution with 2.0 wt% concentration could form
elastic hydrogels through RF-induced photocrosslinking
under visible light irradiation. Their gelation behaviors
were investigated by tube inverting method and rheo-
logical analysis. HA/Tyr hydrogel with or without photo-
initiator showed different degradation rates. The lower
the polymer concentration was, the faster the degrad-
ation rate was. The RF-based, visible light-initiated
photochemical reaction system was contributed to both
crosslinking and degradation of HA/Tyr hydrogel.
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