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Abstracts

Orthopaedics owes its current status of advanced care to the development of biomaterial science more than any
other clinical medical specialty. The purpose of this brief review is to introduce the history and present status of
biomaterials in orthopaedic field and cast a perspective on the future use of biomaterials to treat musculoskeletal
disorders with particular emphasis on immune modulation. While the biomaterials in orthopaedics started from
inert materials to replace the function and structure of hard tissue such as bone and cartilage, regenerative
medicine will play a greater role in preventing the traumatic loss of tissues, as well as in the earlier stages of
diseases. The understanding and modulation of immune response to biomaterials will further lead to the better
incorporation of implants into host tissue or the near-perfect regeneration of host tissue.
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Introduction
A biomaterial is a substance that has been engineered to
take a form which, alone or as part of a complex system,
is used to direct, by control of interactions with compo-
nents of living systems, the course of any therapeutic or
diagnostic procedure [1]. Orthopaedics, which is a
branch of clinical medicine that specializes in the diag-
nosis and treatment of musculoskeletal disease and
trauma in the spine and extremities, owes its current
status of advanced care to the development of biomate-
rial science more than any other clinical medical spe-
cialty. Biomaterials can be used to restore or augment
the physiological function of diseased or damaged tissues
via tissue replacement or regeneration in orthopaedics
[2]. The purpose of this brief review is to introduce the
history and present status of biomaterials in orthopedic
field and cast a perspective on the future use of biomate-
rials to treat musculoskeletal disorders.

History and current application of biomaterials in
orthopaedics
Orthopaedics started in the 18th century as a group of
techniques which used non-surgical means to correct

deformities in growing children. At that time, surgical
treatment of bone and joint disorders was not possible
due to the lack of antiseptic methods and anesthesia
which would make operation safe and endurable. Devel-
opment of inhalation anesthesia and antiseptic methods
in 19th century made general surgery available for suf-
fering patients. On the other hand, a lack of suitable bio-
compatible material prevented bone and joint surgery
from being an option in deformity correction or fracture
management until the early 20th century.
The development of metallic engineering in last cen-

tury produced various biocompatible alloys, including
stainless steel. Plates, screws, and nails that can be used
to fix the bone were devised using those materials, which
revolutionized fracture care. Injuries that were once
treated by suspending the limb in traction for a month
or by wrapping the injury in a heavy cast were now
treated by internal fixation. More refined biocompatible
metal alloys, such as cobalt chrome alloys, are now the
primary material used for artificial joints, which require
permanent implantation.
The development of chemical engineering has also

produced polymeric material, such as ultra-high molecu-
lar weight polyethylene (UHMWPE) or polymethyl-
methacrylate (PMMA), which have been gradually
employed as bearing materials and bonding materials for
artificial joints. Bioinert ceramics such as aluminum
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oxide or zirconium oxide rank as one of hardest mate-
rials found in the earth. These materials are now also
used as bearing material in joint replacements. While
first generation ceramics were fraught with frequent
component breakage, the second generation bioinert
ceramics, i.e. alumina augmented with zirconia, are now
widely used in Korea, and almost replace UHMWPE as
the bearing material of choice in total hip arthroplasty.
These materials are expected to be used continuously
for joint replacement. On the other hand, bioactive cer-
amics, such as calcium phosphates or calcium sulfates,
are used as bone substitutes which fill up bone defects
and function as osteo-conductive materials.
Biocompatible & bioabsorbable polymeric materials

such as polyglycolic acid (PGA), polylactic acid (PLA),
and polydioxanone (PDO) have been used as suture ma-
terials for a decade. These materials are now developed
into screws, pins, and plates. Furthermore, these absorb-
able polymers as used as scaffolds for tissue engineering
of cartilage and bone.

Regenerative medicine and immune response in
biomaterials
While replacements using biomaterials will continue to
be improved upon and will continue to be used to treat
advanced diseases at a reduced cost of implanted mate-
rials, regenerative medicine will play a greater role in
preventing the traumatic loss of tissues, as well as in the
earlier stages of diseases. Stem cells, in combination with
biomaterials, will be essential for those tissue engineer-
ing approaches.
Stem cell–based regenerative approaches have focused

on implanting cells that have been seeded or encapsu-
lated in biomaterials. Exogenous stem cell application
has not yet proven to be generally effective for the re-
generation of most tissues lost by degenerative processes
or trauma. While it is expected that these exogenous
cells are engrafted into host tissue, most of the cells per-
ish after short period time. Furthermore, inflammation
takes place at the site of implantation. As a result, im-
mune response has recently developed into a big issue in
the area of tissue engineering [2].
Regenerative power and the development of immune

system are inversely related relationship in mammals.
Evolutionary and developmental advances in the im-
mune system came with the loss of capacity to fully re-
generate damaged tissues [3–5]. Most mammalian
tissues do not regenerate themselves. This is related to
the their highly developed immune system [6]. In case of
tissue damage, resident precursor cell is activated to pro-
liferate, or a scar is formed. Cellular debris is also rapidly
cleared to remove potentially toxic or immunogenic ma-
terials. Phagocytes are activated to secrete immune-
modulatory factors. Macrophages in mammalian cells

are in charge of those functions and play a primary role
in innate immunity. Interestingly, macrophages show polar-
ized, biphasic responses to tissue injury. Under inflamma-
tory environments, macrophages polarize into classically
activated (M1) or alternatively activated (M2) subtypes
which differ in their function and marker/cytokine profiles
[7]. M1 cells typically produce pro-inflammatory cytokines
and nitric oxides for host defense, which can lead to host
tissue damage. On the other hand, M2 macrophages secrete
anti-inflammatory and immune-modulatory substances,
which mediates the resolution of inflammation and the
wound healing, causing tissue repair. Timely activation and
balance of each macrophage subtype is important for tissue
healing. As early infiltration by M1 macrophages clears nec-
rotic tissue [8, 9], disruption of macrophage polarization
may impair tissue regeneration [10].

Immuno-modulating biomaterials
In the future, the concept of modulating an immune re-
sponse towards the optimal clinical result will be widely
applied in orthopaedic biomaterials. Immuno-modulating
biomaterials can be broadly categorized into two: (1) bio-
materials for replacement that integrate within the body
and remain permanently inside on implantation, causing
minimal inflammation and fibrous tissue formation; (2)
biomaterials for regeneration that offer initial support and
stimulate the formation of new tissue but eventually are
degraded in a controlled way over time [2].

Biomaterials for replacement
Biomaterials for replacement are typically long-term (> 20
years) or permanently implantable devices. They are com-
posed of polymers, ceramics, or metals that are very stable
mechanically and show minimal host response when im-
planted [11]. Biologically inert implants that minimize the
cell-implant interactions in the microenvironment had
been previously preferred [12]. Those implants usually
have native proteins adsorbed on the surface, which pro-
mote the formation of provisional matrix and function as
a buffer between the biomaterial and the host. Also, pre-
cise surgical techniques minimize the relative motion be-
tween the implant and host tissue [2].
Contrarily, some cell-implant interactions can enhance

immune tolerance and integration of implant into host
tissue in certain conditions. Titanium implants for joint
replacements demonstrate higher osseointegration when
the surface is reformed to induce the migration and at-
tachment of osteoblasts [13, 14]. Such alterations may
also subsequently induce a pro-M2 polarization, thereby
providing a favorable immune environment for bone re-
modeling. Modifying surface chemistries and roughness
can incline the polarization to M2 type, which will in
turn lead to greater secretion of regenerative/anti-in-
flammatory factors and minimize the formation of
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fibrous tissue [13, 15, 16]. Recent advancement in bio-
engineering blurs the boundary between replacement
and regenerative biomaterials. Numerous coating tech-
nologies on replacement implants are functionally analo-
gous to those used for regenerative medicine [2].

Biomaterials for regeneration
Biomaterials for regeneration aim to restore the lost struc-
ture and function of damaged tissue [2]. These materials
should degrade in a period spanning several days to months
while promoting the regeneration of host tissue that in-
cludes the regenerated matrices [15, 17]. The initial M1
response recruits inflammatory cells to the implantation
site and instigates the foreign body response [15, 18, 19],
which is a necessary early event for wound healing. How-
ever, prolonged presence of M1 macrophages leads to the
production of cytotoxic reactive oxygen products [20, 21].
Also, fibrous capsule formation from extended inflamma-
tion can impair the biomaterials’ capacity to promote tissue
formation or hinder its ability to degrade as intended. Thus,
a succeeding transition to the M2 type is necessary to pro-
motes tissue remodeling [2].
The anti-inflammatory cytokines (IL-4, IL-10) or small

molecules (steroids), can be used to modulate the im-
mune response so that native signaling is overwhelmed
and directed to M2 polarization to macrophage [22, 23].
This could be done by incorporating them into con-
trolled release systems [23, 24].
Several biochemical and biophysical properties may be

utilized to influence macrophage polarization [25, 26].
The surface topography, including pore size of the scaf-
fold, can be modulated to induce optimal macrophage
polarization [27–29]. However, these modification of
biomaterial designs to modulate macrophage behavior
directly should be done with considerations for un-
desired effects on other types of cells that contribute to
tissue regeneration [2, 30].

Orthopedic biomaterials in the future
Orthopaedics has benefited from the advances in bioma-
terials. Orthopaedic biomaterials started from temporary
implants to fix bone to permanent implant materials and
bioabsorbable implants. In the future, orthopaedic bio-
material will find a place in the regeneration of living tis-
sue, as well as replacing it.
Ongoing research will reveal more details of the inher-

ent qualities of biomaterials and their role in immune-
modulation. This insight into biomaterial-immune re-
sponse interaction will finally lead to an ultimate set of
principles and help to create a new group of immuno-
modulating biomaterials that can actively direct the in-
nate immune system towards better incorporation of im-
plants into host tissue or the near-perfect regeneration
of host tissue.

Conclusion
While the biomaterials in orthopaedics started from
inert materials to replace the function and structure of
hard tissue such as bone and cartilage, regenerative
medicine will play a greater role in preventing the trau-
matic loss of tissues, as well as in the earlier stages of
diseases. The understanding and modulation of immune
response to biomaterials will further lead to the better
incorporation of implants into host tissue or the near-
perfect regeneration of host tissue.
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